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A new method of solving the problem of the adhesive penetration of a punch into an elastic half-plane is proposed, based on 
the well-known [1] procedure of inverting the equations for the contact stresses. The problem is considered in the refined 
formulation, which taken, into account the tangential displacement of the boundary in the boundary condition for the normal 
displacement. A similar problem was solved previously in [2-4] using the incremental approach, which requires additional 
transformations of the initial equations. © 1996 Elsevier Science Ltd. All fights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose a rigid symmetrical punch is indented into an elastic half-plane by a central applied load P 
when there is adhesion between the contacting bodies (see Fig. 1). The latter denotes that points of 
the half-plane which get into contact with the punch are displaced further together with it vertically. 

We will assume that during indentation, the dimension a > 0 of the contact region increases 
monotonically, and we will characterize the degree of penetration of the punch by the quantity a. The 
problem is to find the: contact stresses ql = x~y ly = 0, q2 = --~y [y = 0 for arbitrary a. The boundary conditions 
have the form 

u(x ,a )=tp (x ) ,  u ( x , a ) = g ( x  +pacp(x)), [xl<~a (1.1) 

ql (x ,a )  = qz (x ,a )  = 0, Ixl> a 

where u and v are the tangential and normal displacements of the boundary of the half-plane in the x, 
y system (see Fig. 1), ~0(x) is a certain function to be determined, y = g(x) is the equation of the shape 
of the punch, where, in view of the symmetry of the problem, the function g(x) is even, and !1 = 0 or 
rl = 1. Henceforth we will also use the notation G(x) = g'(x). 

We emphasize that the function cp(x) is the tangential boundary displacement within the region of 
contact, and the fact that the argument a does not occur in it is due to the fact that this displacement 
is independent of the; parameter a when the punch adheres to the half-plane. 

The presence of the term ~0(x) in the argument of the function g in (1.1) when ~t = 1 corresponds to 
the more refined fon~ulation of the contact problem, which takes the tangential displacement of the 
boundary into account in the boundary condition for v.~; When the term ¢p(x) does not occur in the 
second equation of ( H )  (~t = 0) the latter will have the classical form [3]. 

We will note some properties of the function cp(x). Firstly, in view of the symmetry of the problem, 
this function must be odd and 

9 (0 )=0  (1.2) 

Further, since tp(x) is the tangential displacement of the point x of the region of contact, the inequality 
x + cp(x) < 0 whenx -=-" 0 denotes that when the half-plane is deformed the pointx is displaced through 
the centre of the punch to the left, and this obviously contradicts the condition for the contacting surfaces 
of the half-plane and the punch to adhere. Hence it follows that 

x+~p(x)>~O for x~>0 (1.3) 

tPrikl. Mat. Mekh. Vol. 60, No. 2, pp. 267-273, 1996. 
~:SOLDATENKOV I. A., The contact problem for a half-plane in a more refined formulation (taking the tangential contact 

displacement into account). Preprint No. 501. Institute for Problems in Mechanics, Academy of Sciences of the USSR, Moscow, 
1991. 

261 



262 I .A.  Soldatenkov 

q 

#.,.~ 

0 0.5 ~c/a.  t. 

Fig. 1. 

In our further discussion we will use the idea of a node and classes of functions H, Ho, H* and h2, 
defined in [1]. We will introduce the class of functions H+, which we define as fix) ~ H+, if, when 
f(0) = limx__, 0+ of(x) and for any d > 0, the function f(x) belongs to H in the section [0, d]. 

We will impose the following limitations on the shape of the punch and the unknown function 9(x) 

G(x) =- g'(x) ~ H+, q)'(x) ~ H+ (1.4) 

Note that iff(x) ~ H+ and the function f(x) is even or odd (like the functions 9'(x) and g'(x)) and if 
we consider the point x = 0 as the node, we obtain fix) e H0 in [--d, d] for any d > 0. Taking this into 
account, conditions (1.4) can be written in the form 

G(x)EH o, q)'(x)eH o in [-d,d],  d > 0  (1.5) 

where the point x = 0 is regarded as a node. 
We will now consider the boundary stresses ql and q2, the connection of which with the displacements 

u and v is given, in the linear theory of elasticity, by two singular integral equations [5]. "lhking boundary 
conditions (1.1) into account these equations can be represented in the form 

Wl(x)=-rt'gq2(x,a)+ i ~ ,  Ixl<~ a 
_% " 

1tl2(x)=-lt~ql(x,a)- i ~1~,_ Ixl<~ a 
--41 

(1.6) 

where 

ql I (x) = m(p'(x), ~l/2(x) = mG(x + p.q)(x))(I + I.t~p'(x)) 

m =  m 
IrE i - 2v 

2(1-v2)  ' ~ =  2(1 - v - - ' - ~  

(1.7) 

E is Young's modulus and v is Poisson's ratio, 0 ~< v ~ 1/2. 
It can be shown that when conditions (1.5) are satisfied the following property of the functions Wl 

and ~2 follows from (1.7) 

~k(x)~Ho i n [ -d ,d ] ,  d > 0 ,  k = l , 2  (1.8) 
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As regards the functions ql(x, a) and q2(x, a) we will assume that for each a they are bounded at the 
ends --_a of the contact region and belong to the class H* in [--a, a], i.e. in the notation employed in [1] 
we will assume that 

qk(x,a)~h 2 in [-a,a], k=l ,2  (1.9) 

2. INVERSION OF THE EQUATIONS FOR THE BOUNDARY STRESSES 

We fix the dimension a of the contact region. We can invert system (1.6), i.e. obtain expressions for 
ql and q2 in terms of u and v, using the well-known results for systems of singular integral equations 
[6]. However, in this case it is simpler to reduce system (1.6) to a single complex-valued singular integral 
equation, by the method described, for example, in [7], and use the method from [1] to solve it. Thus, 
we multiply the first equation in (1.6) by i and add it to the second equation. We obtain 

-ltZq(x,a)+i I ~ d ~  =f(x) ,  Ixl~ < a 
_, q - x  (2.1) 

q(x,a)=ql(x,a)+iq2(x,a), f (x)=~2(x)+i~/l(x)  
It follows directly from (1.8) and (1.9) that 

f (x )  ~ H o, q(x,a) E h 2 in [-a,a] 

By [1], a solution q(x, a) of Eq. (2.1) of class h2 when f(x) e H0 exists if and only if 

a 
f(~)a~ 

j = 0 (2 .2)  
-a Zl (~, a) 

where 

Zl(x,a)=(a2 - x2 )l/~( aa~+Xx ) i~12, , t = l l n  I + Z ~ O  
n l - x  

When condition (2:.2) is satisfied the following formula for the inversion of Eq. (2.1) holds 

q(x,a)=A*f(x)-B~_ *. Zl(x,a) i • f (~) .~ Ixl~ < a 
ni -a Zi (~,a)(~ - x)'  

A* = X B* = I 
•(1 _~2) '  n ( l - x  2) 

(2.3) 

Note that the limit values of the function q(x, a) from (2.3) asx ~ _a are equal to zero. This follows 
directly from the weU-known theorem of the behaviour of the Cauchy-type integral in (2.3) in the region 
of the ends of the inte.gration line [1]. 

We substitute into (2.2), instead of the function f(x), its expression in terms of the functions ¥1(x) 
and ~2(x), which, in tta'n, are related to the functions t0(x) and g(x) by Eqs (1.7). As a result, taking into 
account the symmetry properties of the functions to(x) and g(x), we obtain the equation 

i ,~0'(x) cos or(x, a) + G(x + ~tto(x))(l + I.tto'(x)) sin or(x, a) dx 0 
0 (a2 - x2 )~ (2.4) 

Ot(x,a) = --~ln a+ x 
2 a - x  

Equation (2.4) must be satisfied for any a > 0 and hence, can be regarded as a Volterra equation of 
the first kind for the unknown function ~o(x). 
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Making a similar substitution into (2.3) we will have for x ~ [-a, a] 

: { ql(x 'a)= 7t(l X 2) X~x(x) - / ( a2n  -x2)~[ i l (x 'a)s in ix(x 'a)+ 

+jl(x,a)cosix(x,a)+i2(x,a)cosix(x,a)-  j2(x,a)sinix(x,a)] } 

1 { 12 
q2(x'a)= It( l-x2)" XVl(x)-l(a2i~ - x2 )~[ i l ( x ' a )c° s i x (x 'a ) -  

-J l  (x, a) sin Ix(x, a) - i 2 (x, a) sin ix(x, a) - j2 (x, a) cos ix(x, a)]} 

ik(x,a)= i tltk(~)sinix(~'a) d~, j~(x,a)= i Vk(~)c°six(~"a) d~ 
-a (a 2 - ~2 ) ~  (~ _ x)  -a (a  2 - ~2 ) ~  (~ _ x )  

(2.5) 

Expressions (2.5) for qk(X, a) can be given a more compact form if we make the change of variables 
x -~ s = arcth(x/a) in them and introduce the functions 

Qk(s,a) = qk(aths, a), qSk(s,a) = qsk(aths ) (2.6) 

Equations (2.5) give the solution of the problem in question, when the function ~0(x) is present, which 
satisfies Eq. (2.4). 

For known contact stresses ql and q2, the load P on the punch is found from its condition of equilibrium 

a o 

P = - 2 I q l ( x , a ) s i n o ~ ( x ) d x + 2 I q 2 ( x , a ) c o s ¢ o ( x ) d x  
o o 

(2.7) 

where ol(x) = arctgg'(x) is the angle of inclination of the contour of the punch to the x axis, x i> 0, where 
I o(x) I ~ 1. 

Note. When v = 1/2 (an incompressible material) we have "~ = 0, and, consequently, Eq. (2.4) in ql(x) 
will have the form 

i q~'(x)dx S ~  I =0,  a > 0  (2.8) 
o (a - x 2)~ 

The function 9(x) - 0 obviously satisfies Eq. (2.8) when condition (1.2) is satisfied. It can be proved 
that the solution 9(x) -= 0 of Eq. (2.8) is unique. To do this it is sufficient to reduce it to the equation,  

lp(a) = a -I Ip(x)dx, a > 0 
o \ a j  

(2.9) 

t, i +x) 
where D(k) is the complete elliptic integral, and it can be shown that the integral operator on the right- 
hand side of (2.9) is contractive in the space of the continuous functions C[0, d] for any d > 0.t 

Substituting the function 9(x) -= 0 into (2.5) we obtain expressions for ql and q2 for v = 1/2, which 
have the same form as in the case of the contact problem without friction 

ql(x,a) =-0, q2(x,a)=2_E(a2 _x2)721z ,,j . ~-'(¢)'n: 
- , ,  ( a "  - x )  

Below we consider a special case of a wedge-shaped punch, for which, by Eqs (2.4) and (2.5), the 
solution of the problem can be found in explicit form. Some other special cases were considered in the 
reference mentioned in the footnote. 

tSOLDATENKOV I. A., The problem of the indentation with adhesion of a punch into an elastic half-space. Preprint No. 
525. Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, 1993. 
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3. THE CASE OF A WEDGE-SHAPED PUNCH 

Suppose 

g(x)=gi lx l ,  G ( x ) = g  isgnx,  g l > 0  (3.1) 

Note that, to satisfy the condition for the deformations to be small, which is necessary for the use of 
Eqs (1.6) of the linear theory of elasticity to be justified, we must assume gl < 1. 

It can be established that when (3.1) holds, the first of conditions (1.4) is satisfied. Substituting (3.1) 
into (1.7) and (2.4) ~md taking inequality (1.3) into account, we arrive at the following expressions for 
¥1 and ¥2 and the equation for ~0(x) 

¥) (x) = rag'(x), ~112 (x) =mg I sgn x(l + l.ttp'(x)) (3.2) 

sin tx(x, a) i c°s°t(x'a!'+l'tg'sina(x'a) q)'(x)dx = -g ,  i(a2 _ 

0 ( a  2 - x 2)~ o x 2)~ 
dx (3.3) 

The following function satisfies (3.3) 

~°'(x)=~°t ~-g~Y0/(80 +~tgaY0), x~> 0 (3.4) 

where 

~sin,CX d x  .* ¢_l),,-J 
To o chX ..,=ff2n-l) +x- 

8 0 .  Tcos xX dX = n (ch nx ~-' 
o chX ~, T j  ~>o 

Beating in mind Eq. (1.2) and also the fact that the function ~0(x) is odd, we obtain from (3.4) 

~o(x)  = ~01x (3.5) 

Expression (3.5) for (p(x) obviously satisfied the second of conditions (1.4). Moreover, inequality (1.3) 
is satisfied for a funetiion of the form (3.5). When ~t = 1 this inequality follows from (3.4) and (3.5) and 
when Ix = 0 it also fol~lows from the inequality 

1 - g i T 0 / 8 0  > 0 ( 3 . 6 )  

the correctness of which is due to the fact that gl < 1 and, as can be shown, 70/~0 < 1 when 0 ~< 
v ~  < 1/2. 

If we substitute (3.2) and (3.5) into (2.5), then, after simple reduction of the integrals ik and j~, we 
can obtain the following expressions for the functions Ql(x, a) and Q2(x, a), related to the constant 
stresses ql(x, a) and q2(x, a) by Eqs (2.6) 

Qk(s,a)= RtWk(s), s > 0, R t = 4(1-v)Egl(1 +ggiT0/80) -~ (3.7) 
n(I + v)(3-  4v) 

-. sin xx dX 7 cos xX 
W,(s)=! shX , W2(,)=; shX aX (3.8) 

We will analyse the behaviour of the contact stresses as x ~ a (s --4 oo) and x ~ 0 + 0 (s ---> 0 + 0). 
To do this we expand the function (sh X) -1 in a power series and integrate the sums obtained term by 
term. We obtain the following equations 

' ** e-(2n-I)" [(2n fsin XS I fcos xslq 
s > o  (3.9) 



266 I .A.  Soldatenkov 

by means of which, and also relations (2.6), it can be established that as x --> a (s ~ .o) 

qk(x,a)= 2R, (a-x')~sin(X_ln 

0 k = arc cos(l + x 2 )-I/'- + 7t(k - I) / 2 

a-xa+X+ok) +O((a-x)~)' x--)a, k = l , 2  (3.10) 

Note that, as also for a parabolic punch [3], the boundary stresses qk tend to zero asx ~ a by a square- 
root law with an infinite number of oscillations. 

To analyse the behaviour of qk as x ~ 0 + 0 we must consider the behaviour of the integrals (3.8) as 
s ---) 0 + 0. Analysis shows that 

7t thTtX WI(s)=~ X+O(s)' W2(s)=-ins+O(i)' Z= 2 

when s --) 0 + 0, and hence, taking (2.6) and (3.7) into account we obtain 

ql(x'a)=2RIX +O( X)' q2(x'a)=-RI Inx+o(l)a (3.11) 

Relations (3.10) and (3.11) define the nature of the behaviour of the stresses qk in the neighbourhood 
of the pointsx = a andx = 0. Intermediate values ofqk (i.e. forx  ~ (0, a))  can be calculated using the 
chain of equalities (3.9), (3.7) and (2.6). The corresponding result for D = 0.25 is shown in Fig. 1. 

From (2.6) (3.7) and (3.8), which define the contact stresses qk, the condition of equilibrium (2.7) 
gives the following expression for the load on a wedge-shaped punch 

tla (3.12) 

Note that, in view of (3.6), the expression in parentheses on the fight-side of (3.12) and, consequently, 
the expression for P itself, take only positive values. 

4. C O N C L U D I N G  R E M A R K S  

When using the classical boundary conditions (1.1) (i.e. for Ix = 0) Eq. (2.4) becomes linear and can 
be solved in explicit form for the more general case of a symmetrical punch 

N 
g(x)= ]~gnx", x >i 0 

n=0 

It can be verified, by direct substitution into (2.4) with Ix = 0, that the corresponding solution has 
the form 

~p(x)=-~. - g,x", x>10 
l 

where "/~, 8n are constant coefficients. 
We recall that 9(x) is the tangential displacement of points in the contact region. Using the results 

obtained in [3] one can also obtain an expression for 9(x) in the case of a polynomial punch, which will 
be of the same accuracy as that presented above. 

It can be verified, for a wedge-shaped punch, that the solution of the corresponding problem obtained 
for classical boundary conditions [3], can be generalized to the case of boundary conditions of the form 
(1.1) with IX = 0.1. The expressions obtained for Qk as a result have the same forms as (3.7). Hence, 
for a wedge-shaped punch the methods described above and in [3] give the same results. However, in 
general, it is difficult to establish that both methods are equivalent. 
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